The BP Cover-UP
The following is an excerpt from a article by Julia Whitty. To read the entire article click here.
FROM THE OUTSET, BP has fought to control every aspect of its uncontrollable catastrophe other than the spill itself. It has wildly spun the numbers on the quantity of hemorrhaging oil. It has continued to dispense Corexit—above and below water—when ordered to stop. It has restricted press access with Kafkaesque flair. Unable or unwilling to skim much oil, BP has poured its energies into skimming up all available resources: renting virtually every hotel room on the Louisiana shores, helping to keep the press at bay; buying the silence of scientists with lucrative pay and confidentiality clauses; chartering nearly every boat on the coast and employing virtually every fisherman and captain made jobless by the spill. I find clusters of these men in the marshes and out in the Gulf, their boats tethered together so they can watch movies on the biggest boat's DVD player.
"They have to pay these guys to work or else they'll riot," says Carl Safina, marine conservationist and cofounder of the Blue Ocean Institute. "As it is, they're angry, drinking, griping in the bars. By paying them, BP is deflecting their anger. Plus some of them feel like they're really helping, even though BP's two prime cleanup methods—setting out boom and using dispersant—completely undermine each other."
The containment and absorbent boom that BP is deploying around beaches and marshes—largely ineffectively—is designed to do just that: contain and absorb oil. But the Corexit dispersant BP has flooded onto the leaking wellhead 5,000 feet down, and sprayed from the air onto the surface—some 2 million gallons in total—is designed to break up the oil. "Which one is it?" asks Safina. "Do you want to contain it or disperse it? It makes absolutely no sense to be doing both. Let's face it, with pollution, you count your lucky stars if you have what's called point-source pollution, that is, a single identifiable localized source of pollution, like the Deepwater Horizon. So what's BP doing with that? They're turning it into the worst pollution nightmare of them all: non-point-source pollution."
Cajun oysterman Flip Tayamen shows his nets clotted with the crude oil washing into Barataria Bay. Photo: James Balog/Aurora Photos
That's because untreated oil quickly rises to the surface, where it can be skimmed with relative ease. But treated with dispersant, it becomes a submerged plume, unlikely to ever float to the surface, and destined to migrate through underwater currents to the entire Gulf basin and eventually the North Atlantic. "Oil is toxic to most life," says Steiner. "And Corexit is toxic to most life. But the most toxic of all is oil that's been treated with Corexit. Plus, dispersants may well kill the ocean's first line of defense against oil: the natural microbes that break oil down for other microbes to eat." The EPA has never seriously examined Corexit's effects on marine life (see "Bad Breakup"). Now it'll get the biggest and baddest field experiment of all time, as the flora and fauna of the shallows and the deep scattering layer collide with the dispersed plumes.
BP's schizophrenic approach to the cleanup becomes more insidious in light of the company's legal liabilities: The Clean Water Act stipulates that BP must pay $1,100 for every barrel of oil proven to have been spilled—$4,300 per barrel if gross negligence is determined. But the use of dispersants clouds estimates of the spill's size, guaranteeing that the true number will never be known—since relatively little oil will ever wash ashore—and guaranteeing that BP's liability will be vastly underestimated.
Consider that while we've all been fixated on the true spill rate—is it 35,000 barrels a day? 60,000 barrels? More?—those figures are only estimates, and only of the oil. Few people realize that some 40 percent of what spews from the Deepwater Horizon well is methane, the primary component of natural gas—a dangerous greenhouse gas and a toxin to most life. Indeed, methane may hold the answer to the quantity of vented oil. David Valentine, a biogeochemist at the University of California-Santa Barbara, suggested in May in an op-ed (pdf) in the journal Nature that plumes of dissolved methane could be used to calculate how much oil has leaked into the Gulf of Mexico. But BP has blurred the evidence trail—intentionally or otherwise—by treating at least some of the escaping methane with methanol, another toxin, in an effort to prevent a dangerous buildup and possibly even another explosion. Nevertheless, around the spill site, Valentine and his colleagues found clouds of dissolved natural gas at 100,000 times the normal density and at depths of more than 2,500 feet. They also found that little of the gas seemed to be reaching the air. Which is good news for the atmosphere, but probably bad news for the ocean. That's because the methane may also be powering up blooms of microbes that eat methane but use up the oxygen in the water as they do so—causing dead zones where most life cannot survive. The Gulf of Mexico is already home to the second-largest dead zone on Earth; the last thing it needs is another. On the surface above the methane clouds, Valentine and colleagues discovered a mass kill of pyrosomes—free-floating colonies of jellyfish look-alikes that straddle the vertebrate-invertebrate divide, and an important food for sea turtles. It's not yet clear which of many smoking guns killed the pyrosomes. "We'll be working up the story of the relationship between dispersant, oil, gas, and the microbial community for some time to come," says Valentine.
Thursday, August 12, 2010
Subscribe to:
Post Comments (Atom)
2 comments:
It is so scary this assault on the environment and ultimately, upon ourselves. I fear we will not realize the true proportions of this latest tragedy for many years to come.
So true, Stickup, not in our lifetime . . .
Post a Comment